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Abstract: Recovering the geometric shape of deformable objects from images is essential
to optical three-dimensional (3D) deformation measurements and is also actively pursued by
researchers. Most of the existing techniques retrieve the shape data with triangulation based
on pre-estimated stereo correspondences. In this paper, we instead propose to recover depth
information directly from images of a binocular vision system for 3D deformation estimation.
Given a calibrated geometry of the system, the reprojection error is parameterized by the
depth and then described with local intensity dissimilarity between a stereo pair in considering
spatial deformation. Afterward, a correlation adjustment model is formulated to estimate the
depth parameter by minimizing the error. As a solving strategy, we show the Gauss-Newton
linearization of the proposed model and its initialization. 3D displacement estimation based
on depth information is also presented. Experiments, including rigid translation and bending
deformation measurements, are conducted to verify the performance of the proposed method.
Results show that the proposed method is accurate yet precise in 3D deformation estimations.
Other underlying developments are underway.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Recent years have seen significant progress on the problem of measuring deformation with digital
image correlation (DIC) techniques. Measuring the surface deformation of objects has been
significantly altered through the adoption of subset-based DIC algorithms. Among them, the
inverse compositional Gauss-Newton (IC-GN) algorithm has attracted much attention owing
to the high-efficiency in computation. Since the algorithm was proposed in image registration
[1], researchers have been sparing no efforts in improving the accuracy [2–4], robustness
to image noise and intensity variations, as well as efficiency [5–7]. This has led to steady
but incremental progress on optical deformation measurement approaches. Because of the
outstanding performance of IC-GN, it also provides an efficient way to process the perspective
deformation to this study.
The combination of DIC and stereophotogrammetry has spawned a valuable technique on

three-dimensional (3D) deformation measurements, the stereo digital image correlation (stereo-
DIC) [8]. It has proved to have attractive abilities in measuring shape and deformation of
arbitrary surfaces. As the technique starts to show advantages such as non-contact and full-field
measurements, it is heralding a revolution in 3D deformation data acquisition in contrast to the
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traditional methods (such as strain gauges, mechanical or laser extensometers). As a result, huge
parts of daily requirements in experimental mechanics, e.g., strain analysis of biological tissues
[9], human body [10] and transparent materials [11], deformation monitoring and control in
industrial manufacturing [12–14], large-scale engineering structure measurements [15,16], and
many more are powered by stereo-DIC. In order to produce significant results in 3D deformation
measurements, researchers have not only played to the strength of the fundamental binocular
imaging systems, but also developed multi-camera measurement systems [17,18], and even
devised several compact stereo imaging devices based on single camera [19–21]. The constant
advances in stereo imaging techniques and measurement systems allow for fine displacement and
strain studies of materials to screen for ideal experimental results.
Despite the above different 3D optical deformation measurement systems and applications

that can be found, the fundamental problems to be addressed are often similar, mainly including
stereo camera calibration, temporal-matching, and 3D reconstruction. Stereo calibration aims to
determine the internal parameters of and the external geometry between cameras with artificial
target-based techniques [22,23] or auto-calibration methods [24,25]. Temporal-matching is
applied to track the deformed positions of points in an image sequence. Owning to intensive
studies on the IC-GN based subset matching [1,2,5,7], the accuracy of temporal-matching was
reported up to 0.01 pixels when following well-controlled experiment conditions [3,26]. On the
basis of the previous two, the 3D reconstruction is conducted to obtain the shape information of
objects for computing 3D displacement data.
Traditionally, the shape of deformable objects is recovered from the point correspondences

built across two calibrated cameras. The process often follows the classic pipeline of firstly
establishing correspondences with stereo-matching followed by reconstructing the 3D profile
through triangulation [8]. However, the reconstruction procedure does not utilize the image
information again, leading to the accuracy and precision of 3D shape reconstruction are heavily
dependent on the quality of the calibration and stereo correspondences. While several studies
investigated how the accuracy of stereo-DIC is affected by errors in 3D reconstruction from
different aspects, e.g., camera calibration [27,28], stereo-matching [29,30] and camera self-
heating [31], few attentions are paid to the improvement of 3D shape reconstruction method for
optical deformation measurements.
Therefore, an end-to-end framework based on stereo vision geometry and correlation is

proposed to obtain high-quality depth reconstruction for 3D displacement estimation. The
model not only works without any pre-estimated stereo correspondences but also improves
the measurement accuracy and robustness by directly retrieving 3D information in the image
domain. In a given binocular stereo imaging setup, the back-projection is firstly formulated with
a depth parameterization. Then a reprojection is obtained under the vision geometry constraint.
The error of the reprojection is expressed in terms of intensity discrepancies between a stereo
pair, giving a direct connection between the depth and image information. This allows us to
directly recover the depth by solving a stereo image correlation problem. We propose the method
as geometry constrained correlation adjustment, and refer to as GC-CA for short. Because
of perspective deformation, the GC-CA model is built in the form of inverse compositional
correlation, maintaining a high-efficiency in computation yet improving the robustness to
image noise. Gauss-Newton based solving approach, as well as its initialization strategies and
implementation details, are provided for the proposed model to enhance the feasibility and quality
of the depth estimation. With the reconstructed depth information, the 3D displacement estimation
algorithm is presented finally. To our knowledge, few studies in deformation measurements have
looked at the issue of estimating 3D shape directly from the calibrated images. Our study fills in
the research gap by providing the proposed stereo depth reconstruction framework.
The rest of this pater is organized as follows: Section 2 presents the GC-CA model. The

principle of the proposed framework is established in Section 2.1. TheGauss-Newton optimization
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algorithm is described in Section 2.2. The initialization strategies and implementation details
are given in Sections 2.3 and 2.4, respectively. The process of 3D displacement estimation
is presented in Section 3. Section 4 gives the experimental verifications. The accuracy of
the proposed model is investigated in Section 4.1, and the performance in 3D deformation
measurement is studied in Section 4.2. Section 5 concludes.

2. Geometry constrained correlation adjustment framework

In this section, the GC-CA framework, which reformulates the IC-GN algorithm based on the
constraint of the calibrated vision geometry, is presented. Subsequently, the Gauss-Newton based
optimization algorithm and the depth initialization are introduced. We end with a description of
the implementation details.

2.1. Principle of GC-CA

Given that a 3D optical deformationmeasurement system composed of two cameras, the schematic
geometry and principle overview of the proposed framework are shown in Fig. 1. For the sake
of conciseness, we assume that the imaging model is ideal and thus image distortion is not
considered temporarily. The explanation of GC-CA is also based on the simple sum of squared
differences (SSD) criterion, but the same derivations stay valid for any other correlation criteria.

Fig. 1. The geometry and schematic illustration of the GC-CA framework, where the
object coordinate frame X-Y-Z is aligned and attached to the reference frame C. Because of
epipolar geometry constraint, the projection x′(d) ∈ R2 of object point X(d) ∈ R3 produced
by adjusting the depth d should move along a straight line; meanwhile, the deformation
parameter vector p is also updated to warp the subset Ω(x′) surrounds x′(d) to match against
the one Ω(x) centered at x.

Considering that the camera system is well pre-calibrated using stereo calibration techniques
such as [22,25], a fixed, precise external imaging geometry can be obtained. We follow a
reasonable assumption that the object coordinate system is aligned to the frame of the left
camera C. The camera is accordingly referred to as the reference and the right C′ is defined
as the matching camera in this paper. With the frame configuration, an object point can be
parameterized by its depth d along the light ray passing through its projection x ∈ R2 in the left
image f and the optical center of the reference camera. According to the pinhole camera model,
the counterpart x ∈ R3 of x in the normalized image domain can be obtained with the following
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inverse mapping:

x = K−1


x

1

 , (1)

where

K =


fx 0 cx

0 fy cy

0 0 1


∈ R3×3

is the pre-calibrated intrinsic matrix of the reference camera, with fx and fy being the focal
lengths in pixel dimensions in x- and y-directions, and (cx, cy) being the principle point in pixel
dimensions.

Relative to the reference frame X-Y-Z shown in Fig. 1, the object point back-projected from x
can be expressed by scaling the normalized term x in Eq. (1) using its depth d as:

X(d) = xd. (2)

For the calibrated stereo imaging system, the back-projection above defines the 3D point in form
of depth parametrization, so that X(d) can be identified in terms of its projection in the reference
camera up to the only unknown parameter, d. This allows reducing the degree of freedom for the
problem of 3D point reconstruction from 3 to 1. As the depth is determined, the object point is
then recovered.
In order to estimate depth d, the reprojection of the object point X(d) on the image plane of

the matching camera is considered. Let R ∈ SO(3) be the pre-calibrated relative rotation matrix
and T ∈ R3 be the relative translation vector from the reference frame to the matching camera
frame. As shown in Fig. 1, the projection x′(d) of X(d) in the right image g is thus given by:

[x′(d), 1]T = K′〈RX(d) + T〉, (3)

where K′ denotes the known intrinsic matrix of the matching camera, and operator 〈·〉 indicates
the normalization that maps [x, y, z]T to [x/z, y/z, 1]T . Clearly, x′(d) is also the function of d. At
this point, it is ready to identify the final depth.

Conventionally, the depth could be determined by trivially minimizing the Euclidean distance
between the reprojection x′(d) and the observed correspondence (obtained by pre-matching
with x). However, using pre-matched point correspondence to reconstruct depth does not use
image information again, posing that the quality of 3D reconstruction heavily depends on the
accuracy of the stereo matching. One possible way of addressing the problem is to bring the
image back into the loop of stereo reconstruction. Drawing inspiration from the traditional subset
matching, we devise the GC-CA framework to identify the depth parameter d from the stereo
pair f and g directly. As shown in Fig. 1 and Eq. (3), each of x′(d) is obtained based on the given
geometry and thus gives rise to an implicit constraint to enable a feasible correlation adjustment.
Because of the perspective deformation, the inverse compositional approach to the local spatial
deformation is adopted below in modeling the correlation adjustment framework. This enables
an end-to-end stereo depth reconstruction with high-accuracy for 3D displacement computation.

Let Ω = {η = (ηx, ηy)| −M ≤ ηx, ηy ≤ M} be a square window with a radius of M, the subset
surrounds x′(d) can be described asΩ(x′) = {g(x′(d)+η)|η ∈ Ω}, where d is omitted inΩ(x′) for
notation clarity. Similarly, the subset centered at the point x is given by Ω(x) = {f (x+ η)|η ∈ Ω}.
The fundamental model of the proposed GC-CA framework can be established using the inverse
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compositional SSD as follows:

C(d,p) = 1
2

∑
η∈Ω

[f (x + T(η;∆p)) − g(x′(d) + T(η;p))]2 , (4)

where p = [ux, uy, vx, vy]T is the deformation parameter vector of the subset Ω(x′), ∆p indicates
the incremental vector of p, and

T(η;p) =

1 + ux uy

vx 1 + vy



ηx

ηy

 , (5)

denotes the first-order spatial shape transform of the subset Ω(x′) relative to its center. The
shape transformer T(η;p) deforms the shape of the subset with the given linear transformation,
endowing a capacity to the model to cope with the projective deformation. It should be noted
that any differentiable spatial transformers could be used in the model if needed. For general
3D surfaces, a nonlinear spatial transformer formulated with the first five rows and columns of
the second-order shape function [6] is recommended for gaining better matching to the local
projective deformation. Finally, the depth d can be computed by solving the nonlinear problem
above.

In contrast to the traditional stereo reconstruction accomplishedwith an explicit stereo-matching
followed by the triangulation, the proposed model directly outputs the depth information by
invoking a correlation adjustment when the first reprojection is done. In the process, as the subset
Ω(x′) is gradually warped and moved to the optimal matching position, the depth d is gradually
updated to the optimal one. For ease of understanding, the procedure is schematically drawn as
the dashed lines in Fig. 1. It is worth mentioning that, because the vision geometry is mainly
supported by the calibration parameters, the error propagation due to the imprecise calibration
of the stereo imaging system results in systematic errors . Moreover, we choose the inverse
compositional version versus the classic forwards additive counterpart because the efficiency of
the depth refinement can be improved significantly by maintaining most terms stay in constant
over Gauss-Newton iterations. This is described in detail in Section 2.2.

2.2. Gauss-Newton optimization

Equation (4) models the depth estimation as a nonlinear correlation problem. By minimizing the
objective function, the optimal depth can be determined. There are various standard methods
to accomplish this. Because of the inverse compositional form of the proposed framework, an
efficient yet robust way is to use the Gauss-Newton algorithm. However, the presence of the
depth parameter brings several differences in the aspects of linearization, gradient computation,
and parameter updating, compared with the traditional IC-GN algorithm. Therefore, the
Gauss-Newton optimization for the proposed GC-CA is presented.
By applying the Taylor expansion theorem in Eq. (4), the linearized objective function is

obtained by truncating the higher-order terms as follows:

L(∆d,∆p) = 1
2

∑
η∈Ω

[
ε(d,p) + ∂ε(d,p)

∂d
∆d +

∂ε(d,p)
∂p ∆p

]2
, (6)

where
ε(d,p) = f (x + η) − g(x′(d) + T(η;p)) (7)

is pixel-wise intensity residual between the subsets Ω(x) and Ω(x′),

∂ε(d,p)
∂d

= −∇g
∂x′

∂d
(8)
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and
∂ε(d,p)
∂p = ∇f

∂T

∂p (9)

are the derivatives of the intensity residual with respect to the depth and spatial deformation
parameters, respectively. ∇f and ∇g are the gradients of images f and g at points x and
x′(d) + T(η;p), respectively. ∂x′

∂d is the derivative of the reprojected point x′(d) with respect to
the depth parameter, and

∂T

∂p =

ηx ηy 0 0

0 0 ηx ηy


is the Jacobian of the spatial transformer.
Equation (6) is a function of the increments of the depth and deformation parameters, ∆d

and ∆p. The goal of the Gauss-Newton optimization is to compute both of the increments for
updating d and p to a new state. For this purpose, taking derivatives of the function in Eq. (6)
with respect to the increments ∆d and ∆p respectively, then let them be zeros, we obtain the
normal equations of the Gauss-Newton algorithm as:

H

∆d

∆p

 =
∑
η∈Ω


−∇g ∂x′

∂d(
∇f ∂T∂p

)T  ε , (10)

where H, the Gauss-Newton approximation of the Hessian with dimensions of 5 × 5, is given by:

H =
∑
η∈Ω


(
∇g ∂x′

∂d

)2
−∇g ∂x′

∂d ∇f
∂T
∂p

−∇g ∂x′
∂d

(
∇f ∂T∂p

)T (
∇f ∂T∂p

)T
∇f ∂T∂p

 . (11)

After ∆d and ∆p are solved from Eq. (6), the depth value and the deformation vector can be
updated by the following equations:

d← d + ∆d

T(p) ← T(p) ◦ T −1(∆p)
(12)

where ◦ is the compositional operator [1]. Equations (10)–(12) show the iterative format of the
Gauss-Newton algorithm for the proposed GC-CA framework. In addition, Eq. (11) shows
an essential requirement for solving the problem is that the intensity gradient response within
the subsets should not be vanishing, and should above the image noise level. This condition is
usually satisfied with speckle patterns but is not always be satisfied when using natural surface
textures. For that, it is recommended to estimate the depths by extracting salient feature points in
the natural surface patterns [32].
For the Gauss-Newton in Eq. (10), it is worth noting that the gradient contributions in terms

of the deformation parameters, ∂ε∂p , are invariant over iterations because ∇f and
∂T
∂p in Eq. (9) are

both evaluated on the subset Ω(x). This means that the entries, corresponding to the deformation
parameters, in the Hessian matrix and the right-hand side vector remain constant over iterations.
In Eq. (10), it clearly shows that these constant terms in iteration can be grouped together to
obtain a constancy pattern: the lower right 4 × 4 sub-matrix in H, and the last 4 elements in the
right-hand side vector are constant. The constancy pattern gained from the inverse compositional
form greatly reduces the computational load due to the majority of gradient evaluations are
avoided, ensuring the efficiency of the proposed GC-CA. This advantage will be more significant
when a higher-order spatial transform pattern is used in Eq. (5).
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2.3. Initialization

Initialization is also necessary to depth estimation in the GC-CA framework. A good initialization
benefits the performance in aspects of convergence and speed. For each point computation,
the initial guess to the deformation parameter vector p is straightforward by setting p = 0 at
the onset of computation. However, the depth initialization is not so trivial compared with
that for p, because there is no direct apriori information for the depth to be recovered. To
address the problem, a reasonable approach to provide the depth initial guess is to retrieve some
information on the depth that is available in pre-calibration. Since control points used in the
pre-calibration are often close to or on the surface of the object being measured, the range of
depth variations between the control points and the object surface is quite small relative to the
object distance. Accordingly, the depth information of each control point can be used to initialize
the depth reconstruction in the undeformed configuration. We refer to these known depths in the
pre-calibration as nominal depths to the depth initialization.

With the nominal depths, a closest depth assignment (CDA) strategy is advocated to improve
the quality of the depth initialization. For one initial object point X(d) to be reconstructed, its
nearest control point is searched by testing the distance between the projection of X(d) and the
projections of all control points observed from the reference camera. Then the nominal depth
corresponding to the searched control point is used as the initial guess in computing d. It is
worth noting that, if the artificial target-based calibration is employed, the control points are
suggested to be selected from the calibration pose placed in the middle of the field of view and
closest to the object, whenever it is possible. For the self-calibration techniques where the control
points come from surfaces being measured, the pre-determined depth of each control point can
be directly used as a nominal depth. After the depth map in the initial state is estimated, one can
initialize subsequently depth estimation using the result of its previous state or the initial depth
estimation according to the magnitude of out-of-plane deformation. This is feasible since the
depth variations caused by the object deformation is rather small, not least for the widely used
solid materials and structures. We found that the CDA strategy could ensure the subset Ω(x′)
mostly overlaps with the optimal one corresponding to the subset Ω(x′), so that the problem in
Eq. (4) can be solved effectively by the above Gauss-Newton algorithm.

2.4. Implementation details

For notation brevity, the GC-CA model is established based on the SSD criterion and the ideal
pinhole model in Section 2. Here several implementation details are introduced to enhance the
practicability of the proposed method. In comparison to the SSD, its robust variant, zero-mean
normalized SSD (ZNSSD), is more practical [5], and thus is recommended to model the problem
in Eq. (4).

Moreover, because of the imperfect optical systems of cameras in practice, the lens distortion
should be considered in the proposed framework, not least that the radial distortion. The radial
distortion models introduced in literatures [25] and [22] are recommended for the back-projection
and the reprojection in Eqs. (2) and (3), respectively. Although both distortion functions can be
expressed in the same symbolic form, they behave in opposite ways: the former maps a distorted
image point to its undistorted counterpart analytically, and the latter distorts an ideal image point.
This implies that both the back-projection and the reprojection can maintain an exact analytic
form, rather than the iterative procedure used in the tradition. By using this radial distortion
process scheme, one significant benefit is the derivate term ∂x′

∂d can be computed analytically.
The other benefit is that the accuracy loss caused by the distortion rectification is mitigated.
Both are essential for the Gauss-Newton optimization in Section 2.2. Note that the distortion
functions of the reference and matching cameras should be determined respectively in the system
pre-calibration.
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3. 3D displacement field estimation

The estimation of 3D displacement is implemented by comparing the deformed object shape
with its initial counterpart (at the undeformed stage). Let x0 be the initial position of the current
point x imaged by the reference camera. Given the depths estimated by the proposed GC-CA
corresponding to x0 and x are d0 and d, respectively, the corresponding object points X(d0) and
X(d) are obtained according to Eq. (2). By substituting Eq. (1) into Eq. (2), the 3D displacement
vector can be estimated in terms of the depth as:

U = X(d) − X(d0) = K−1

∆dx0 + du

∆d

 (13)

where ∆d = d − d0 is the depth variation, u ∈ R2, the displacement from image point x0 to x, is
determined by the temporal-matching.
According to Eq. (13), the overall pipeline of the 3D displacement computation consists of

pre-calibration, initial depth evaluation, temporal image matching, depth reconstruction, and
displacement output, which is illustrated in Fig. 2. In summary, the overall computing procedure
is listed below:

Fig. 2. 3D displacement estimation pipeline with the proposed GC-CA algorithm. There
are two feasible initialization flows for depth computing presented: sequential and parallel
initialization. The former allowed for cases with large out-of-plane deformation because
the initial guess comes from the previous deformation state, while the latter is suitable for
small out-of-plane deformation since the depth estimation after deformation uses the depth
information evaluated at begin.

Step 1: Pre-calibration of the 3D optical measurement system. The intrinsic matrices, K and
K′, for both cameras as well as the external parameters, R and T, are determined in advance.
In addition, a set of nominal depths can be obtained for the CDA initialization according to the
calibrated geometry between the reference camera and the calibration target. In this sense, the
stereo calibration methods [24,25] are recommended to obtain better depth initialization.

Step 2: Initial depth evaluation. In full-field optical measurements, obtaining deformation data
for densely distributed points of interest (POIs) is desired. For that, this step aims to recover the
initial depth d0 for every POI in the undeformed state T0 using the proposed GC-CA. The initial
guess is obtained with the CDA strategy, as described in Section 2.3. We propose this strategy
following the continuity hypothesis in 3D deformation measurements that is, for two points on the
object surface being measured, the closer their projections the smaller difference in their depths.
Step 3: Temporal image matching. This step computes the deformed position x and the

displacement vector u for each of POIs. They can be obtained using 2D image registration
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techniques. Since the contribution of u to the 3D displacement is scaled by the depth d, it is
required to estimate u as accurately as possible. Hence, the IC-GN based DIC method is highly
recommended in this step. Note that there is no order of priorities between this and the previous
steps. They can be performed simultaneously.

Step 4: Depth reconstruction after deformation. For each deformed state Ti(i = 1, . . . , n), the
depth di corresponding to x is recovered from the current image pair using the proposed GC-CA.
Two possible ways are provided to obtain the initial guess in this step, as illustrated in Fig. 2.
One of them is performed sequentially, that is, the initial value of the current depth di is the
corresponding value di−1 in the previous state; the other is the initial guess of di comes from the
corresponding depth d0 in the initial state, enabling the depth reconstruction can be performed in
parallel.
Step 5: Calculates 3D displacements, by substituting the results in the above steps into Eq.

(13).

4. Experimental verifications

The proposed algorithm was verified in the section to show its correctness and performance in
displacement estimation and strain measurement, by using a rigid body translation and plate
bending experiments respectively. In both experiments, the proposed method was implemented
with the spatial shape transformer in Eq. (5).

4.1. Rigid body translation

To verify the correctness of the proposed GC-CA framework, a rigid body translation experiment
was carried out using the experimental setup shown in Fig. 3(a). The stereo measurement system
was composed of two separate cameras, both of which were equipped with a monochrome
imaging sensor (IDS UI-3370CP) with a resolution of 2048 × 2048 pixels and a 50 mm prime
lens (Kowa Optimed). The baseline between the two cameras was about 220 mm. A flat plate
with size of 100 mm × 100 mm × 6 mm was adopted as the test specimen, and a random speckle
pattern was fabricated on its surface. Figure 3(b) shows a sample of the speckle pattern in the
verification. The specimen was fixed on a motorized translation stage with an accuracy of 1 µm
in front of the camera system, ensuring its translation can be well-controlled. The object distance
from the specimen to each of the cameras was about 600 mm, and the stereo angle θ ≈ 25
degrees. During the experiment, the stereo image system was calibrated by the well-known
Zhang’s method with a planar chessboard target (11 × 8 corners, 5 mm spacing). The calibrated
internal and external parameters are listed in Table 1.

Fig. 3. (a) Experimental setup for rigid body translation and (b) a pair of recorded speckle
images with a defined ROI.

In the experiment, the specimen was shifted by the translation stage from −1 to 1 mm with an
increment step of 0.1 mm in consideration of the calibration error. At each step, a pair of speckle
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Table 1. Pre-calibrated internal and external parameters.

Parameter Reference camera Matching camera

fx, fy 10079.50, 10078.30 10096.50, 10101.90

cx, cy 1025.37, 1015.24 1047.87, 1003.47

κ1, κ2 -0.27, 2.24 0.28, -2.36

r (◦) (−1.56, 24.66, 0.75)

t (mm) (201.67, − 16.67, 62.26)

images was recorded by the reference and matching cameras simultaneously. Subsequently, the
displacements of the specimen were first calculated using the computation pipeline shown in
Fig. 2, and then calculated using the stereo-DIC technique for comparison. Both techniques used
the same calibration parameters, ROI and POIs, and adopted the 2D DIC method to track the
POIs. The grid spacing for generating the POIs was 10 pixels and the subset size was 31×31
pixels. For 3D reconstruction in the stereo-DIC, the second-order shape function was employed
to perform the stereo-matching, the linear triangulation was used to recover the object points
[33]. In the GC-CA computing, a single nominal depth d̄ = 618.52 mm was used to initialize
the initial depth reconstruction. Here d̄ was determined by the mean depth of corners on the
chessboard in the first calibration pose.

Figure 4(a) shows the initial 3D shape of the specimen reconstructed by the proposed method.
Intuitively, the reconstructed surface of the planar specimen looks quite fine. In order to show
the quality of the reconstruction, we drew the depth distribution along the line at Y = 0 mm and
evaluated depth variations by computing the distances between the sampled depths and the fitting
line of their distribution, as shown in Fig. 4(b). The depth variation range is between -0.03 mm
and 0.04 mm with a standard deviation of 0.02 mm, which seems to indicate a good planeness of
the surface reconstructed by the proposed GC-CA. It is worth noting that the depth increases
from left to right since the specimen was placed with its surface not vertical to the optical axis of
the reference camera.

Fig. 4. (a) 3D shape of the planar specimen reconstructed by the proposed GC-CA
framework; (b) Depth distribution along the horizontal line at Y = 0 mm, where the
embedded curve shows the distance from the fitting line for each depth.

To show the expected performance in 3D deformation estimation, the displacements of each
POI were first estimated by the proposed method and stereo-DIC, respectively. The measured
translations were then obtained by averaging the total displacements of all POIs at each step for
both methods and compared with the actual translations. Results are shown in Fig. 5(a). It can
be seen that, although the measured translations for both methods seem in good agreement with
the applied values, the results of the proposed method are closer to the actual ones than those
measured by the stereo-DIC. Relative to the applied translations, the maximum absolute error
and the standard deviation of the translations measured by the proposed GC-CA are 0.0095 mm
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and 0.0030 mm. Both are lower than the corresponding errors resulting from the stereo-DIC,
which are 0.0208 mm and 0.0099 mm respectively.

Fig. 5. Measured mean translations (a) and measured mean strains Exx and Eyy (b) by the
proposed GC-CA and stereo-DIC, respectively.

For further investigating the performance, the strains Exx and Eyy in X and Y directions were
estimated using the approach introduced in [34] with a window size of 9 × 9 points. The averaged
strains measured by the proposed method and the stereo-DIC at each step are shown in Fig. 5(b).
This figure illustrates the measured strains in both directions for the proposed method maintain a
modest fluctuation with a range of about ±30 µε. The standard deviations of the strains Exx
and Eyy measured by our method are 17.3 and 12.9 µε, respectively. By contrast, the measured
strains by the stereo-DIC are clearly larger: the maximum absolute value of Exx is 70.6 µε, with
a standard deviation of 38.9 µε; The maximum absolute value of Eyy is 59.5 µε, with a standard
deviation of 27.8 µε. In addition, by observing the measured strains shown in Fig. 5(b), one can
see that all strain distributions present similar systematic behaviors. The reason may well be both
methods adopted the same calibration parameters. The comparison of the measurement errors in
this experiment shows that the proposed GC-CA framework benefits to gain more accurate and
precise results than the stereo-DIC method where the 3D reconstruction relies on the pre-matched
geometric point correspondences. This is because the proposed GC-CA framework is capable
of retrieving high-quality depth information directly from the image domain containing the
underlying intensity data, so that the error propagations due to some extra operations such as
explicit stereo-matching could be restrained.

4.2. Performance on strain measurement

To evaluate the performance of the proposed method on strain measurement, an experiment with
a simply supported plate subjected to a concentrated out-of-plane load was conducted. The
experimental setup is shown in Fig. 6(a). The specimen was made of Inconel 718 alloy and
has a geometry in size of 150 mm × 30 mm × 3 mm. A random speckle pattern was sprayed
on the surface of the specimen and recorded by a mirror-based single-camera stereo imaging
system [19,24]. The focal length of the lens in the system was 12 mm, and the resolution of
the camera sensor was 1280 × 1024 pixels. A strain gauge was attached to the middle range of
the plate on the back surface. The principal direction of the strain guage was aligned along the
length direction of the plate. A concentrated load was applied in the out-of-plane direction as
shown in Fig. 6(a). The load was ramped up according to the readouts from the strain gauge. 12
stressed states with known strain magnitudes were achieved finally. The corresponding speckle
images were recorded in phase. One sample of the captured speckle image is shown in Fig. 6(b).
According to the positioning lines of the strain gauge, a virtual strainmeter was labeled with a
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small window on the specimen surface. By doing this, the strains recorded by the strain gauge
can be acted as the ground-truth for validating the proposed method.

Fig. 6. (a) Experimental setup for 3D deformation measurement and (b) a pair of recorded
speckle images with the defined virtual strainmeter.

The imaging system was calibrated by the method introduced in our previous work [25]. By
averaging the calibrated internal parameters, we used the shared focal lengths fx = 2402.63, fy =
2397.86 and principle point c = (631.86, 500.92). The external parameters are listed as r =
(-0.04, 48.52, -0.11) degrees, t = (77.38, 0.04,−1.88) mm. In the pre-calibration, 1013 pairs of
features were used. After removing features close to the borders, we obtained 900 depth values
in the ROI to serve as initial guesses for subsequent depth estimation. With this information,
the proposed method can be used to compute the 3D displacement fields for strain analysis.
The subset size in both temporal-matching and depth computing were 31 × 31 pixels. The
average of the resulted strains within the range of the virtual strainmeter was outputted as the
measured strain. For comparison, we also obtained a set of strains from the virtual strainmeter
by applying the stereo-DIC technique with the same calibration parameters in the loading stage.
In stereo-DIC computing, the temporal-matching method and computation parameters were
the same as the proposed method, and the stereo-matching and triangulation methods were the
same as the experiment in Section 4.1. The performance of the proposed method was validated
by investigating the static strain errors, and comparing the measured bending strains with the
ground-truth and the results of the stereo-DIC. Because of bending deformation, the strain of the
upper surface was in compression while the lower surface was in tension. Therefore, in the stage
of loading, we took the absolute values of the virtual strainmeter to make the signs are consistent
with the ground-truth. Results are illustrated in Fig. 7.

Figure 7(a) shows the static strains evaluated by the proposed method from 49 pairs of speckle
images before loading. The errors are almost less than 20.0 µε, the maximum absolute error and
the standard deviation are 20.7 µε and 8.7 µε, respectively. The results suggest that the proposed
GC-CA could achieve reasonable accuracy with low static strain measurement errors. Figure 7(b)
shows the measured bending strain values in the deformed stages and compares against the
ground-truth and the results of the stereo-DIC. It can be seen that the bending strains yielded by
the proposed method are more consistent with the readouts of the strain gauge. The maximum
absolute difference between the results of our method and the ground-truth is 25.6 µε, with a
standard deviation 7.3 µε, while that for the stereo-DIC is 63.7 µε with a standard deviation is
19.6 µε. All differences between the measured values of the proposed method and the gauge
are less than 25 µε almost, presenting a consistent error level with the static errors evaluated
before loading. Moreover, the strain differences seem stable and do not rise obviously with the
increase of loading. By comparison, the measurement errors of the stereo-DIC, which performs
3D reconstruction with the separate stereo-matching and triangulation steps, are larger and may
on an upward trend with the loading increasing. This experiment further verifies the performance
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Fig. 7. (a) Static strain errors evaluated for the proposed GC-CA; (b) Comparison of strains
measured by the proposed GC-CA with those of stereo-DIC and the ground-truth, where
the difference curves show respectively the absolute errors of the GC-CA and stereo-DIC
relative to the ground-truth.

of the proposed GC-CA framework, showing high-accuracy 3D deformation measurements could
be expected by reconstructing the shape of deformable objects in end-to-end from the image
domain.

5. Conclusion

We propose GC-CA, a nonlinear end-to-end depth reconstruction framework for high precision 3D
deformationmeasurements. The proposedmethod links the image correlation and vision geometry
to directly perform high-quality stereo depth reconstruction in the image domain, reducing the
uncertainty of deformation estimation. With 3D deformation measurement experiments, we show
that the feasibility of the proposed GC-CA model in 3D displacement and strain measurements,
and demonstrate that it outperforms the traditional 3D reconstruction technique based on the
geometric point correspondences and linear triangulation method. In addition, the efficient
optimization algorithm and the implementation scheme provided in the paper ensure the proposed
method can be implemented with an acceptable computational speed. This research potentially
sheds new light on high-precision optical 3D shape and deformation measurements.
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